Identify and Compare discernment rules for accurate Liver Disorder detection using Apriori and FP Generation Analysis

Gagandeep Kaur

Dept. Computer Engg., UIET, Punjab University, Chandigarh – 160014, India

Abstract: has identified different association rules by using Apriori and FP Generation Analysis algorithms for Liver Disorder Detection. There are two liver patients' data sets, USA patients and Indian patients. On the basis of common attributes experiments are conducted on data sets. Firstly, to check significance difference, experiments of ANOVA and MANOVA are conducted for the two different populations. Value of significance as null hypotheses is defined as 0.05 at 95% level of confidence. Then, Apriori and FP – Generation algorithms are applied to the two data sets. During analysis of the two techniques, association rules generated by them are compared with each other.

Keywords: ANOVA, MANOVA, Apriori, FP Generation, Liver Disorder.

INTRODUCTION

Patients with Liver diseases are increasing continuously day by day. These are caused by the too much use of alcohol; breathe in of injurious gases, eating of unhygienic foodstuff, pickles and drugs. Automatic tools are used to classify diseases. These tools may reduce burden on doctors. There are number of different algorithms that are used for the classification of different liver patient datasets [14]. Previously, sickness analysis uses arithmetical methods for modeling. In statistical methods, there are number of suppositions are used to evaluate linear data. So they are less competent to use in case of very big and complex nonlinear and reliant data. There are two data sets of Liver patients one is from US and other is from INDIA having different attributes. There is evaluation of frequent patterns by using Boolean association rules that can help for more accurate detection how many patients are the there. Applied methods are listed as below:

- 1. ANOVA and MANOVA analysis of combined data set.
- 2. ANOVA and MANOVA analysis of Liver Patient of UCI and India data set.
- 3. ANOVA and MANOVA analysis of Liver Non Patient of UCI and India data set.
- 4. Apriori Algorithm.
- 5. FP Generation.

I. DATA SETS

There are two data sets that are in use from University of California at Irvine (UCI) Machine Learning Repository.

USA data set contains 345 records of Liver patients with six attributes. India data set contains 583 records of Liver patient records taken from India with ten attributes. There are three familiar attributes (ALKPHOS, SGPT and SGOT) in both the datasets. These three attributes are used for the intention of contrast between both the data sets. Firstly, typical arithmetical methods one-way Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA) are applied to evaluate considerable difference between two populations for the categorization. After this, Apriori and FP – Generation algorithms are applied to find strongly associated rules for the different values of minimum support and confidence.

II. RELATED WORK

Mireille Tohm'et al [7] proposed an alternative to usual multiclass multivariate group comparison tests such as Hypothesis tests are used to compare and show the efficiency of drugs. Junning Li et al.[8] proposed a Dynamic Bayesian Networks (DBN)-based groupanalysis which combines the DBN approach and the multivariate analysis of variance (MANOVA). Neven Cukrov et al.[9] was applied multivariate statistical analysis to the measured physico-chemical parameters to estimate anthropogenic and natural influences to water system of the Krka River. Z. Haddi et al.[10] proposed Multivariate Analysis of Variance (MANOVA) to test the significance of the differences between cheeses groups. Z. A. Dastgheib et al. [11] applied multivariate analysis of variance (MANOVA) to select pairs of features showing the most significant differences between the groups to get more classifier accuracy. S. Dimitrova [12] conducted MANOVA to check the significance of the influence of three different factors namely 1 planetary geomagnetic activity level estimated by Ap-index and divided into five levels, 2. gender - males and females and 3. the presence of medication. Paulo Ricardo Galhanone et al. [13] applied MANOVA and Discriminate analysis to Spectral analysis of the multichannel EEG of neonates is carried out with a view to determining differences in characteristics of High-Voltage-Slow, Low-Voltage-Irregular and Mixed EEG patterns. Diego Moitre, and Fernando Magnago [14] presented the application of themethodology of analysis of variance of multivariate data (MANOVA) to detect the impact of the fuel consumption on the market price. B.Surendiran et al.[15] proposed an Univariate Analysis of Variance (ANOVA) and Discriminate Analysis (DA) classifier for classifying the masses present in mammogram. Martha L. Zequera et al. [16] was designed to assess the effect of time on the repeatability of the LorAn pressure distribution measurement system, and evaluate the variability of plantar pressure and postural balance, during barefoot standing in diabetic and non-diabetic subjects, for future diabetic foot clinical evaluation. Benjamin F et al. [17] presented Directed canonical analysis as an extension of the general form of canonical analysis, which is a method for reducing the dimensionality of multivariate data sets with minimum loss of discriminatory variance. Aleksandar Jeremic et al. [18] developed a frequency-domain channel estimation algorithm for single-user multiantenna orthogonal frequency division multiplexing (OFDM) wireless systems in the presence of synchronous interference.

III. RESULTS AND DISCUSSION

ANOVA and MANOVA analysis of combined data set In this, we have all records of patients of the two populations. There are 345 records in UCI data set and 583 records in Indian data set. So, total numbers of records in this data set are 928. Firstly, Descriptive statistics of each individual attribute is done. Group 1 is used to denote UCI dataset and Group 2 is used to denote India data set.

Table 1, Table 2 and Table 3 shows the explanatory statistics for all the individual attributes ALKPHOS, SGPT and SGOT respectively.

After this, one-way ANOVA is applied for the three attributes ALKPHOS, SGPT and SGOT. The results of one way ANOVA are shown in table 4-6

Table 1: Descriptive Statistics of ALKPHOS

	ALKPHOS									
Group	N	Mean	Std. Deviation	Std.	95% Confidence Interval for Mean		Minimum	Maximum		
				EII0I	Lower Bound	Upper Bound				
1	345	69.8696	18.34767	.98781	67.9267	71.8125	23.00	138.00		
2	583	2.9058E2	242.93799	10.061	270.8151	310.3375	63.00	2110.00		
Total	928	2.0852E2	220.38146	7.23438	194.3271	222.7224	23.00	2110.00		

	Table 2: Descriptive Statistics of SGPT									
				SGPT						
Group	N	N Mean	Mean Std. Std.		95% Confidence Interval for Mean		Minimum	Maximum		
			Deviation	EII0I	Lower Bound	Upper Bound				
1	345	30.4058	18.51231	1.05051	27.3396	31.4720	4.00	155.00		
2	583	80.7136	182.62036	7.56336	65.8587	95.5684	10.00	2000.00		
Total	928	61.0108	146.21187	4.83247	51.5269	70.4946	4.00	2000.00		

Table 3: Descriptive Statistics of SGOT

	SGOT									
Group	N	Mean	Std.	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum		
			Deviation		Lower Bound	Upper Bound				
1	345	24.6435	10.06449	.54185	23.5777	25.7092	5.00	82.00		
2	583	1.0991E2	288.91853	11.96578	86.4094	133.4122	10.00	4929.00		
Total	928	77.2112	231.69093	7.63845	62.2205	91.2019	5.00	4929.00		

Table 4: One Way ANOVA on ALKPHOS between UCI and INDIA datasets

	ALKPHOS								
	Sum of Squares	Df	Mean Square	F	Sig.				
Between Groups	1.0557739946177348E7	1	1.0557739946177348E7	283.665	.000				
Within Groups	3.446478348377956E7	926	37218.988643390454						
Total	4.5022523429956906E7	927							

Table 5: One way ANOVA on SGPT between UCI and INDIA

	SULL								
	Sum of Squares	Df	Mean Square	F	Sig.				
Between Groups	548541.540885325	1	548541.540885325	25.994323345805746	.000				
Within Groups	1.954078435135608E7	926	21102.359						
Total	2.0089325892241407E7	927							

Table 6: One way ANOVA on SGOT between UCI and INDIA datasets SGOT

	5661								
	Sum of Squares	Df	Mean Square	F	Sig.				
Between Groups	1575814.0937010911	1	1575814.0937010911	30.0144788928219	.000				
Within Groups	4.8616664509747185E7	926	52501.798						
Total	5.019247860344828E7	927							

Significant values of Table 4, Table 5 and Table 6 is 0.0. So, null hypothesis is safely rejected. There is more significant difference between the two groups.

Now, descriptive statistics is calculated for the different combination of attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>, <u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u>. Results are recorded as shown in tables 7 to 10

Table 7: Descriptive Statistics of ALKPHOS and SGPT

	Group	Mean	Std. Deviation	Ν
	1	68.8696	17.34767	345
ALKPHOS	2	2.9058E2	242.93799	583
	Total	2.0852E2	220.38146	928
	1	30.4058	19.51231	345
SGPT	2	79.7136	181.62036	583
	Total	61.0108	146.21187	928

Table 8: Descriptive Statistics of ALKPHOS and SGOT

	Group	Mean	Std. Deviation	N
	1	68.8696	17.34767	345
ALKPHOS	2	2.9058E2	242.93799	583
	Total	2.0852E2	220.38146	928
	1	30.4058	19.51231	345
SGOT	2	80.7136	182.62036	583
	Total	62.0108	147.21187	928

Table 9: Descriptive Statistics of SGPT and SGOT

	Group	Mean	Std. Deviation	Ν
	1	23.6435	11.06449	345
SGOT	2	1.0991E2	288.91853	583
	Total	77.2112	231.69093	928
SGPT	1	29.4058	18.51231	345
	2	79.7136	181.62036	583
	Total	61.0108	146.21187	928

Table 10: Descriptive Statistics of ALKPHOS, SGPT and SGOT

			,	
	GROUP	Mean	Std. Deviation	N
	1	24.6435	10.06449	345
SGOT	2	1.0991E2	288.91853	583
	Total	77.2112	231.69093	928
	1	31.4058	18.51231	345
SGPT	2	79.7136	181.62036	583
	Total	63.0108	146.21187	928
ALKPHOS	1	69.8696	18.34767	345
	2	2.9058E2	242.93799	583
	Total	2 0852E2	220 38146	028

Table 7, Table 8, Table 9 and Table 10 shows the
descriptive statistics for the different combinations of
attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>,
<u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u> respectively.Multivariate Tests are applied for the combination of
attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>,
<u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>,
<u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT</u>, <u>SGPT</u>,SGOT. The results of
Multivariate tests are reported in table 11-14

Table 11: Multivariate Tests o	ALKPHOS and SGPT between	UCI and INDIA datasets
--------------------------------	--------------------------	------------------------

	Effect	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.469	4.088E2a	2.0	925.0	0.0	.469	817.698	1.0
Intercont	Wilks' Lambda	.531	4.088E2a	2.0	925.0	0.0	.469	817.698	1.0
Intercept	Hotelling's Trace	.884	4.088E2a	2.0	925.0	0.0	.469	817.698	1.0
	Roy's Largest Root	.884	4.088E2a	2.0	925.0	0.0	.469	817.698	1.0
	Pillai's Trace	.239	1.462E2a	2.0	925.0	0.0	.239	291.410	1.0
Group	Wilks' Lambda	.759	1.462E2a	2.0	925.0	0.0	.239	291.410	1.0
	Hotelling's Trace	.315	1.462E2a	2.0	925.0	0.0	.239	291.410	1.0
	Roy's Largest Root	.315	1.462E2a	2.0	925.0	0.0	.239	291.410	1.0

Significant value for table 11 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, two populations differ a lot on ALKPHOS and SGPT.

Table 12: Multivariate Tests on ALKPHOS and SGOT between UCI and INDIA datasets

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta	Noncent	Observed
							Squareu	1 di diffetet	TOwer
Intercept	Pillai's Trace	.455	3.863E2a	2.0	925.0	0.0	.455	772.615	1.0
	Wilks' Lambda	.545	3.863E2a	2.0	925.0	0.0	.455	772.615	1.0
	Hotelling's Trace	.835	3.863E2a	2.0	925.0	0.0	.455	772.615	1.0
	Roy's Largest Root	.835	3.863E2a	2.0	925.0	0.0	.455	772.615	1.0
Group	Pillai's Trace	.238	1.453E2a	2.0	925.0	0.0	.238	289.655	1.0
	Wilks' Lambda	.760	1.453E2a	2.0	925.0	0.0	.238	289.655	1.0
	Hotelling's Trace	.313	1.453E2a	2.0	925.0	0.0	.238	289.655	1.0
	Roy's Largest Root	.313	1.453E2a	2.0	925.0	0.0	.238	289.655	1.0
G1 10	1 0 11 10 10	0 701 1	1 1 0.05 (5			1	1 1 751 1		11.00

Significant value for table 12 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, two populations differ a lot on ALKPHOS and SGOT.

Table 13: Multivariate Test on SGPT and SGOT between UCI and INDIA datasets

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.121	63.431a	2.0	925.0	0.0	.121	126.861	1.0
Intercent	Wilks' Lambda	.879	63.431a	2.0	925.0	0.0	.121	126.861	1.0
Intercept	Hotelling's Trace	.137	63.431a	2.0	925.0	0.0	.121	126.861	1.0
	Roy's Largest Root	.137	63.431a	2.0	925.0	0.0	.121	126.861	1.0
	Pillai's Trace	.032	14.775a	2.0	925.0	0.0	.032	30.549	1.0
Group	Wilks' Lambda	.966	14.775a	2.0	925.0	0.0	.032	30.549	1.0
	Hotelling's Trace	.033	14.775a	2.0	925.0	0.0	.032	30.549	1.0
	Roy's Largest Root	.033	14.775a	2.0	925.0	0.0	.032	30.549	1.0

Significant value for table 13 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant

difference between the two populations. Hence, two populations differ a lot on SGOT and SGPT.

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.473	2.761E2a	3.0	924.0	0.0	.473	827.245	1.0
Intercent	Wilks' Lambda	.527	2.761E2a	3.0	924.0	0.0	.473	827.245	1.0
Intercept	Hotelling's Trace	.897	2.761E2a	3.0	924.0	0.0	.473	827.245	1.0
	Roy's Largest Root	.897	2.761E2a	3.0	924.0	0.0	.473	827.245	1.0
Group	Pillai's Trace	.241	96.462a	3.0	924.0	0.0	.240	291.386	1.0
	Wilks' Lambda	.761	96.462a	3.0	924.0	0.0	.240	291.386	1.0
	Hotelling's Trace	.317	96.462a	3.0	924.0	0.0	.240	291.386	1.0
	Roy's Largest Root	.317	96.462a	3.0	924.0	0.0	.240	291.386	1.0

Table 14: Multivariate Test on ALKPHOS, SGPT and SGOT between UCI and INDIA datasets

Significant value for table 14 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, two populations differ a lot on ALKPHOS, SGPT and SGOT.

All significant values are less than the value defined at null hypothesis for four different multivariate tests for all the combination of attributes. This indicates that there is an important consequence of the independent variables on all of the dependent variables considered as a group.

B. ANOVA and MANOVA analysis of Liver Patient of UCI and India data set

In this, there are records of only liver patients of the two populations. There are 145 records in UCI data set and 416 records in Indian data set. So, total numbers of records in this data set are 561. Firstly, Descriptive statistics of each individual attribute is done. Group 1 is used to denote UCI dataset and Group 2 is used to denote India data set.

Table 15, Table 16 and Table 17 shows the descriptive statistics for the individual attributes ALKPHOS, SGPT and SGOT respectively.

Then, one-way ANOVA is applied for the attributes ALKPHOS, SGPT and SGOT. The results of one way ANOVA are shown tables 18,19,20

Significant values of Table 18, Table 19 and Table 20 is 0.0. Null hypothesis is safely rejected. Hence, the two populations differ a lot for all the three attributes (ALKPHOS, SGPT and SGOT).

Table	15:	Descri	ptive	Statistics	of	ALKPHOS
			A T T	ZDUOG		

ALKPHOS											
Group	N	Mean	Std.	Std.	95% Confidence Interval for Mean		Minimum	Maximum			
			Deviation	LIIOI	Lower Bound	Upper Bound					
1	145	72.9793	17.59079	2.54388	67.9277	74.0309	23.00	138.00			
2	416	3.1901E2	268.30791	13.15488	293.1487	344.8657	63.00	2110.00			
Total	561	2.5516E2	255.25397	10.77683	233.9907	276.3266	23.00	2110.00			

Table 16: Descriptive Statistics of SGPT

SGPT											
Group	Ν		Std. Deviation	C+J	95% Co	onfidence					
		Mean		Error	Interval for Mean		Minimum	Maximum			
				LIIU	Lower Bound	Upper Bound					
1	145	30.2069	14.77793	2.31029	27.6170	32.7968	10.00	103.00			
2	416	99.6058	212.76847	10.43183	79.1000	120.1116	12.00	2000.00			
Total	561	80.9269	184.77111	8.84326	65.5211	96.3327	10.00	2000.00			

Table 17: Descriptive Statistics of SGOT

	5001											
Group	N	Mean	Std.	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum				
			Deviation		Lower Bound	Upper Bound						
1	145	22.7862	7.73806	.64261	21.5160	24.0564	5.00	57.00				
2	416	1.3770E2	337.38998	16.54190	105.1832	170.2159	11.00	4929.00				
Total	561	1.0800E2	294.80242	12.44657	83.5506	132.4459	5.00	4929.00				

Table 18: One Way ANOVA on ALKPHOS between UCI and INDIA datasets

ALKPHOS									
	Sum of Squares	Df	Mean Square	F	Sig.				
Between Groups	6561309.964273992	1	6561309.964273992	123.564	.000				
Within Groups	2.992525991629642E7	559	53533.560						
Total	3.648656888057041E7	560							

Table 19: One Way ANOVA on SGPT between UCI and INDIA datasets

SGPT Sum of Squares Mean Square Df F Sig. 14.93886620254279 Between Groups 503032.8643077679 503032.8643077679 .000 1 559 Within Groups 1.882E7 33672.761 1.933E7 560 Total

Table 20. One way ANOVA on SOOT between UCT and INDIA dataset	Table	20: One	e Way	ANOVA	on SGOT	between	UCI a	and INDIA	datasets
---	-------	---------	-------	-------	---------	---------	-------	-----------	----------

	SGOT										
	Sum of Squares	Df	Mean Square	F	Sig.						
Between Groups	1419839.1858998295	1	1419839.1858998295	16.798064599907626	.000						
Within Groups	4.725E7	559	84523.975								
Total	4.867E7	560									

Now, descriptive statistics is calculated for the different combination of attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>, <u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u>. Results are recorded as shown in tables below:

<u>ALKPHOS,SGPT, ALKPHOS,SGOT, SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u> respectively.

Multivariate Tests are applied for the combination of attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>, <u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u>. The results of Multivariate tests are reported in tables 25-28

Table 21, Table 22, Table 23 and Table 24 shows the descriptive statistics for the combination attributes

Table 21: Descriptive Statistics of ALKPHOS and SGPT

	Group	Mean	Std. Deviation	Ν
	1	70.9793	17.59079	145
ALKPHOS	2	3.1901E2	268.30791	416
	Total	2.5516E2	255.25397	561
	1	31.2069	15.77793	145
SGPT	2	98.6058	211.76847	416
	Total	80.9269	184.77111	561

Table 22: Descriptive Statistics of ALKPHOS and SGOT

Tuble 22. Descriptive Statistics of Filler flob and 5001								
	Group	Mean	Std. Deviation	N				
	1	70.9793	17.59079	145				
ALKPHOS	2	3.1901E2	268.30791	416				
	Total	2.5516E2	255.25397	561				
	1	22.7862	7.73806	145				
SGOT	2	1.3770E2	337.38998	416				
	Total	1.0800E2	294.80242	561				

Table 23: Descriptive Statistics of SGOT and SGPT

	Group	Mean	Std. Deviation	Ν
SGOT	1	21.7862	6.73806	145
	2	1.3770E2	337.38998	416
	Total	1.0800E2	294.80242	561
SGPT	1	31.2069	15.77793	145
	2	98.6058	211.76847	416
	Total	80.9269	184.77111	561

Table 24: Descriptive Statistics of ALKPHOS, SGPT and SGOT

	GROUP	Mean	Std. Deviation	N
	1	22.7862	7.73806	145
SGOT	2	1.3770E2	337.38998	416
	Total	1.0800E2	294.80242	561
	1	31.2069	15.77793	145
SGPT	2	98.6058	211.76847	416
	Total	80.9269	184.77111	561
	1	71.9793	18.59079	145
ALKPHOS	2	3.1901E2	268.30791	416
	Total	2.5516E2	255.25397	561

Table 25: Multivariate Tests on ALKPHOS and SGPT between UCI and INDIA datasets

Effect		Value	F	Hypothesis df	Error df	Sig	Partial Eta	Noncent	Observed
	Effect	varae	-	rijpotnesis ur	Entor di	515.	Squared	Parameter	Power
	Pillai's Trace	.378	1.698E2a	2.0	558.0	0.0	.378	339.623	1.0
	Wilks' Lambda	.622	1.698E2a	2.0	558.0	0.0	.378	339.623	1.0
Intercept	Hotelling's Trace	.609	1.698E2a	2.0	558.0	0.0	.378	339.623	1.0
_	Roy's Largest	600	1.698E2a	2.0	559.0	0.0	279	339.623	1.0
	Root	.009			558.0	0.0	.378		
	Pillai's Trace	.188	64.173a	2.0	557.0	0.0	.188	129.346	1.0
	Wilks' Lambda	.810	64.173a	2.0	557.0	0.0	.188	129.346	1.0
Group	Hotelling's Trace	.233	64.173a	2.0	557.0	0.0	.188	129.346	1.0
	Roy's Largest Root	.233	65.173a	2.0	557.0	0.0	.188	129.346	1.0

Significant value for table 25 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, two populations differ a lot on ALKPHOS and SGPT.

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.362	1.584E2a	2.0	558.0	0.0	.362	316.802	1.0
	Wilks' Lambda	.638	1.584E2a	2.0	558.0	0.0	.362	316.802	1.0
	Hotelling's Trace		1.584E2a	2.0	558.0	0.0	.362	316.802	1.0
Intercept	Roy's Largest Root	.568	1.584E2a	2.0	558.0	0.0	.362	316.802	1.0
	Pillai's Trace	.186	63.337a	2.0	558.0	0.0	.186	127.673	1.0
	Wilks' Lambda	.812	63.337a	2.0	558.0	0.0	.186	127.673	1.0
Group	Hotelling's Trace	.230	63.337a	2.0	558.0	0.0	.186	127.673	1.0
	Roy's Largest Root	.230	63.337a	2.0	558.0	0.0	.186	127.673	1.0

Table 26: Multivariate Tests on ALKPHOS and SGOT between UCI and INDIA datasets

Significant value for table 26 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, two populations differ a lot on ALKPHOS and SGOT.

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.089	27.283a	2.0	558.0	0.0	.089	54.566	1.0
	Wilks' Lambda	.911	27.283a	2.0	558.0	0.0	.089	54.566	1.0
Intercept	Hotelling's Trace	.098	27.283a	2.0	558.0	0.0	.089	54.566	1.0
	Roy's Largest Root	.098	27.283a	2.0	558.0	0.0	.089	54.566	1.0
	Pillai's Trace	.030	8.921a	2.0	557.0	0.0	.030	16.841	.973
	Wilks' Lambda	.968	8.921a	2.0	557.0	0.0	.030	16.841	.973
Group	Hotelling's Trace	.031	8.921a	2.0	557.0	0.0	.030	16.841	.973
	Roy's Largest Root	.031	8.921a	2.0	557.0	0.0	.030	16.841	.973

Significant value for table 27 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, two populations differ a lot on SGPT and SGOT.

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.381	1.145E2a	3.0	556.0	0.0	.380	342.461	1.0
	Wilks' Lambda	.619	1.145E2a	3.0	556.0	0.0	.380	342.461	1.0
Intercept	Hotelling's Trace	.616	1.145E2a	3.0	556.0	0.0	.380	342.461	1.0
	Roy's Largest Root	.616	1.145E2a	3.0	556.0	0.0	.380	342.461	1.0
	Pillai's Trace	.189	42.446a	3.0	556.0	0.0	.191	131.339	1.0
	Wilks' Lambda	.809	42.446a	3.0	556.0	0.0	.191	131.339	1.0
Group	Hotelling's Trace	.233	42.446a	3.0	556.0	0.0	.191	131.339	1.0
	Roy's Largest Root	.233	42.446a	3.0	556.0	0.0	.191	131.339	1.0

Table 28: Multivariate Tests on ALKPHOS, SGPT and SGOT between UCI and INDIA datasets

Significant value for table 28 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, two populations differ a lot on ALKPHOS, SGPT and SGOT.

C. ANOVA and MANOVA analysis of Non Liver Patient of UCI and India data set

In this, there are records of only non liver patients of two data sets. There are 200 records in UCI data set and 167 records in Indian data set. So, total numbers of records in this data set are 367. Firstly, Descriptive statistics of each individual attribute is done.

Table 29, Table 30 and Table 31 shows the descriptive statistics for the individual attributes ALKPHOS, SGPT and SGOT respectively.

	Tuble 19: Descriptive Statistics of Tible 1105										
	ALKPHOS										
Group		Mean	Std. Deviation	Std. Error	95% Co	nfidence		Maximum			
	N				Interval	for Mean	Minimum				
					Lower Bound	Upper Bound					
1	200	68.3400	18.06199	1.27718	65.8215	70.8585	37.00	134.00			
2	167	2.1975E2	140.98626	10.90984	198.2146	241.2944	90.00	1580.00			
Total	367	1.3724E2	122.03879	6.37037	124.7127	149.7669	37.00	1580.00			

Table 29: Descriptive Statistics of ALKPHOS

Table 30: Descriptive Statistics of SGPT

SGPT										
Group	Ν	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum		
					Lower Bound	Upper Bound				
1	200	29.8250	21.84492	1.54467	26.7790	32.8710	4.00	155.00		
2	167	33.6527	25.06039	1.93923	29.8240	37.4814	10.00	181.00		
Total	367	30.5668	22.40824	1.22190	28.1639	32.9696	4.00	181.00		

Table 31: Descriptive Statistics of SGOT

	5001									
Group	Ν	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum		
					Lower Bound	Upper Bound				
1	200	25.9900	11.28880	.79824	24.4159	27.5641	8.00	82.00		
2	167	40.6886	36.41162	2.81762	35.1256	46.2516	10.00	285.00		
Total	367	31.6785	25.91344	1.40487	28.9158	34.4411	8.00	285.00		

Then, ANOVA is applied for the attributes ALKPHOS, SGPT and SGOT is applied. The results of one way ANOVA are shown as below:

Significant values of Table 32, Table 33 and Table 34 is 0.0. That means significant value is less than 0.05. So, null

hypothesis is safely rejected. There is more significant difference between the two groups. Hence, the two populations differ a lot for all the three attributes (ALKPHOS, SGPT and SGOT).

Table 32: One way ANOVA on ALKPHOS between UCI and INDIA datasets

ALKINOS									
	Sum of Squares	Df	Mean Square	F	Sig.				
Between Groups	2086485.085050825	1	2086485.085050825	226.35210749432147	.000				
Within Groups	3364523.814131736	365	9217.873463374619						
Total	5451998.899	366							

Table 33: One Way ANOVA on SGPT between UCI and INDIA datasets

	5011									
	Sum of Squares	Df	Mean Square	F	Sig.					
Between Groups	1333.3831539917421	1	1333.3831539917421	2.4430163776633638	0.11891559975864789					
Within Groups	199214.7312874252	365	545.7937843491102							
Total	200548.11444141695	366								

Table 34: One Way ANOVA on SGOT between UCI and INDIA datasets

5001										
	Sum of Squares	Df	Mean Square	F	Sig.					
Between Groups	19662.27156227057	1	19662.27156227057	29.239807483019625	.000					
Within Groups	245443.78838323356	365	672.4487352965303							
Total	265106.0599455041	366								

Now, descriptive statistics is calculated for the different combination of attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>, <u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u>. Results are recorded as shown in tables below:

Table 35, Table 36, Table 37 and Table 38 shows the descriptive statistics for the combination attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>, <u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u> respectively.

Table 35: Descriptive Statistics of ALKPHOS and	I SGPT
---	--------

	Group	Mean	Std. Deviation	Ν
	1	67.3400	17.06199	200
ALKPHOS	2	2.1975E2	140.98626	167
	Total	1.3724E2	122.03879	367
	1	29.8250	21.84492	200
SGPT	2	32.6527	24.06039	167
	Total	30.5668	22.40824	367

Tuble 56. Descriptive Statistics of ALIXI HOS and SOOT								
	Group	Mean	Std. Deviation	N				
	1	67.3400	17.06199	200				
ALKPHOS	2	2.1975E2	140.98626	167				
	Total	1.3724E2	122.03879	367				
SGOT	1	25.9900	11.28880	200				
	2	39.6886	35.41162	167				
	Total	31.6785	25.91344	367				

Table 36: Descriptive Statistics of ALKPHOS and SGOT

Table 37: Descriptive Statistics of SGPT and SGOT

	Group	Mean	Std. Deviation	N
SGOT	1	24.9900	10.28880	200
	2	39.6886	35.41162	167
	Total	31.6785	25.91344	367
	1	28.8250	20.84492	200
SGPT	2	32.6527	24.06039	167
	Total	30.5668	22.40824	367

Table 38: Descriptive Statistics of ALKPHOS, SGPT and SGOT

	GROUP	Mean	Std. Deviation	N
	1	25.9900	11.28880	200
SGOT	2	40.6886	36.41162	167
	Total	31.6785	25.91344	367
	1	28.8250	20.84492	200
GPT	2	32.6527	24.06039	167
	Total	30.5668	22.40824	367
	1	68.3400	18.06199	200
ALKPHOS	2	2.1975E2	140.98626	167
	Total	1.3724E2	122.03879	367

Multivariate Tests are applied for the different combination of attributes <u>ALKPHOS,SGPT</u>, <u>ALKPHOS,SGOT</u>, <u>SGPT,SGOT</u> and <u>ALKPHOS,SGPT,SGOT</u>. The results of Multivariate tests are reported in tabular form as below:

Table 39: Multivariate Tests on ALKPHOS and SGPT between UCI and INDIA data	isets
---	-------

Effect	t	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.762	5.815E2a	2.0	363.0	0.0	.761	1162.006	1.0
	Wilks' Lambda	.238	5.815E2a	2.0	363.0	0.0	.761	1162.006	1.0
Intercept	Hotelling's Trace	3.194	5.815E2a	2.0	363.0	0.0	.761	1162.006	1.0
Intercept	Roy's Largest Root	3.194	5.815E2a	2.0	363.0	0.0	.761	1162.006	1.0
	Pillai's Trace	.392	1.167E2a	2.0	363.0	0.0	.392	232.442	1.0
	Wilks' Lambda	.608	1.167E2a	2.0	363.0	0.0	.392	232.442	1.0
Group	Hotelling's Trace	.642	1.167E2a	2.0	363.0	0.0	.392	232.442	1.0
Group	Roy's Largest Root	.642	1.167E2a	2.0	363.0	0.0	.392	232.442	1.0

Significant value for table 39 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Two populations differ a lot on ALKPHOS and SGPT.

Fable 40: Multivariate	Tests on ALKPHOS	and SGOT between	UCI and INDIA datasets
------------------------	------------------	------------------	------------------------

Effe	ct	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.757	5.661E2a	2.0	363.0	0.0	.756	1131.186	1.0
	Wilks' Lambda	.243	5.661E2a	2.0	363.0	0.0	.756	1131.186	1.0
Intercent	Hotelling's Trace	3.121	5.661E2a	2.0	363.0	0.0	.756	1131.186	1.0
intercept	Roy's Largest Root	3.121	5.661E2a	2.0	363.0	0.0	.756	1131.186	1.0
	Pillai's Trace	.384	1.141E2a	2.0	363.0	0.0	.384	227.271	1.0
	Wilks' Lambda	.614	1.141E2a	2.0	363.0	0.0	.384	227.271	1.0
Group	Hotelling's Trace	.626	1.141E2a	2.0	363.0	0.0	.384	227.271	1.0
	Roy's Largest Root	.626	1.141E2a	2.0	363.0	0.0	.384	227.271	1.0

Significant value for table 40 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, populations differ a lot on ALKPHOS and SGOT.

Effec	et	Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent Parameter	Observed Power
	Pillai's Trace	.682	3.911E2a	2.0	363.0	0.0	.681	781.195	1.0
	Wilks' Lambda	.318	3.911E2a	2.0	363.0	0.0	.681	781.195	1.0
Intercent	Hotelling's Trace	3.149	3.911E2a	2.0	363.0	0.0	.681	781.195	1.0
Intercept	Roy's Largest Root	3.149	3.911E2a	2.0	363.0	0.0	.681	781.195	1.0
	Pillai's Trace	.088	16.344a	2.0	363.0	0.0	.086	33.689	1.0
	Wilks' Lambda	.915	16.344a	2.0	363.0	0.0	.086	33.689	1.0
Group	Hotelling's Trace	.097	16.344a	2.0	363.0	0.0	.086	33.689	1.0
Group	Roy's Largest Root	.097	16.344a	2.0	363.0	0.0	.086	33.689	1.0

Table 41: Multivariate Tests on SGPT and SGOT between UCI and INDIA datasets

Significant value for table 41 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. There is more significant difference between the two populations. Hence, populations differ a lot on SGPT and SGOT.

Table 42: Multivariate Tests on ALKPHOS,	SGPT and SGOT between UCI and IN	DIA datasets
--	----------------------------------	--------------

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta	Noncent	Observed
							Squared	Parameter	Power
	Pillai's Trace	.772	4.092E2a	3.0	362.0	0.0	.771	1226.699	1.0
Intercept	Wilks' Lambda	.228	4.092E2a	3.0	362.0	0.0	.771	1226.699	1.0
	Hotelling's Trace	3.382	4.092E2a	3.0	362.0	0.0	.771	1226.699	1.0
	Roy's Largest Root	3.382	4.092E2a	3.0	362.0	0.0	.771	1226.699	1.0
	Pillai's Trace	.407	82.103a	3.0	362.0	0.0	.406	248.308	1.0
	Wilks' Lambda	.593	82.103a	3.0	362.0	0.0	.406	248.308	1.0
Group	Hotelling's Trace	.687	82.103a	3.0	362.0	0.0	.406	248.308	1.0
	Roy's Largest Root	.687	82.103a	3.0	362.0	0.0	.406	248.308	1.0

Significant value for table 42 is 0.0. That is less than 0.05 (F < 0.05). It means null hypothesis is safely rejected. It means there is more significant difference between the two populations. Hence, populations differ a lot on ALKPHOS, SGPT and SGOT.

D. Apriori

Apriori is a standard algorithm for repeated item set mining. In this, different association rules are learned for different transactional databases. It proceeds by identifying

the common individual items in the database and extending these item sets to larger and larger item sets.

Firstly data preprocessing is done AND Normalized form of data set is shown as below

%relation CombinedDataweka.filters.unsupervised.attribute.Remove-R1weka.filters.unsupervised.attribute.Discretize-F-B5-M-1.0-R1weka.filters.unsupervised.attribute.Discretize-F-B5-M-1.0-R2weka.filters.unsupervised.attribute.Discretize-F-B5-M-1.0-R3 @attribute alkphos {'\'[0-68.5]\'', \'(68.5-136]\'', \'(136-190.5]\'', \'(190.5-273.5]\'', \'(273.5-max]\'') @attribute sgpt {'\'[0-19.5]\'', \'(19.5-25.5]\'', \'(25.5-34.5] \'', \'(34.5-56.5]\'', \'(56.5-max]\'') @attribute sgot {'\'[0-19.5]\'', \'(19.5-24.5]\'', \'(24.5-33.5] \'', \'(33.5-65.5]\'', \'(65.5-max]\'') @attribute selector {yes,no} @data '\'(68.5-136]\'', \'(25.5-34.5]\'', \'(24.5-33.5]\'',no '\'(68.5-136]\'', \'(25.5-34.5]\'', \'(19.5-24.5]\'',no '\'(68.5-136]\'', \'(10-19.5]\'',no '\'(68.5-136]\'', \'(10.5-25.5]\'', \'(10-19.5]\'',no '\'(68.5]\'', \'(19.5-25.5]\'', \'(10-19.5]\'',no '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(10-19.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(19.5-24.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(10-19.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(19.5-24.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(19.5-24.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(10.5-24.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(10.5-24.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\'', \'(10.5-24.5]\'',yes '\'(0-68.5]\'', \'(19.5-25.5]\''', \'(10.5-24.5]\'',yes '\'(0-68.5]\''', \'(19.5-25.5]\''', \'(10.5-24.5]\'',yes '\'(0-68.5]\''', \'(19.5-25.5]\''', \'(10.5-24.5]\''',yes '\'(0-68.5]\''', \'(19.5-25.5]\''', \'(10.5-24.5]\'',yes '\'(0-68.5]\''', \'(19.5-25.5]\''', \'(10.5-24.5]\''',yes '\'(0-68.5]\'''', \'(10.5-25.5]\''', \'(10.5-24.5]\''',yes '\'(0-68.5]\''', \'(10.5-25.5]\''', \'(

Figure 1: Normalized form of data set

Then before applying Apriori algorithm different attributes of Apriori algorithm are set as lowerBoundMinSupport (0.01 - 0.10) numRules as 100 and upperBoundMinSupport as 1.0.

E. FP GROWTH:

FP stands for frequent pattern. There are passes for the complete process of this algorithm. In the first phase, the

algorithm counts happenings of items (attribute-value pairs) in the dataset, and supplies these values to 'header table'. In the second phase, it builds the FP-tree structure by adding instances. FP-tree provides high density close to tree root. Preprocessing of data set before applying FP Growth algorithm and normalized form of data set with binary data type is shown below:

Grelation CombinedData @relation CombinedData-weka.filters.unsupervised.attribute.Remove-R1-weka.filters.unsupervised.attribute.Discretize-F-B5-M-1.0-R1-weka.filters.unsupervised.attribute.Discretize-F-B5-M-1.0-R2-weka.filters.unsupervised.attribute.NominalToBinary-R1-weka.filters.unsupervised.attribute.NominalToBinary-R6-weka.filters.unsupervised.attribute.NominalToBinary-R1-weka.filters.unsupervised.attribute.NominalToBinary-R1-weka.filters.unsupervised.attribute.NominalToBinary-R1weka.filters.unsupervised.attribute.NominalToBinary-R16-weka.filters.unsupervised.attribute.NumericToBinary-unset-classtemporarily 'alkphos=\'[0-68.5]\'_binarized' {0,1} 'alkphos=\'(68.5-136]\'_binarized' {0,1} 'alkphos=\'(136-190.5]\'_binarized' {0,1} 'alkphos=\'(190.5-273.5]\'_binarized' {0,1 'alkphos=\'(273.5-max]\'_binarized' {0,1} 'sgpt=\'[0-19.5]\'_binarized' {0,1} 'sgpt=\'(25.5-34.5]\'_binarized' {0,1} 'sgpt=\'(34.5-56.5]\'_binarized' {0,1} 'sgot=\'(6.5-max]\'_binarized' {0,1} 'sgot=\'(19.5-24.5]\'_binarized' {0,1} 'sgot=\'(19.5-24.5]\'_binarized' {0,1} 'sgot=\'(24.5-33.5]\'_binarized' {0,1} 'sgot=\'(24.5-33.5]\'_binarized' {0,1} 'sgot=\'(24.5-33.5]\'_binarized' {0,1} 'sgot=\'(33.5-65.5]\'_binarized' {0,1} 'sgot=\'(65.5-max]\'_binarized' {0,1} 'sgot=\'(65.5-max)\'_binarized' {0,1} Gattribute _____binarized' {0,1} Gattribute Gattribute 1} Gattribute Gattribute Gattribute {0,1} Gattribute Gattribute Gattribute Gattribute Gattribute Gattribute Gattribute Gattribute Gattribute selector {yes, no} 6dat. ,1,0,0,0,0,0,0,1,0,0,0,1,0,0,yes ,0,0,0,0,0,0,0,0,1,0,0,1,0,0,no Figure 2: Normalized form of data set with binary data type

Before applying Fp Growth algorithm different attributes are defined as lowerBoundMinSupport (0.001 - 0.010), numRules as 100 and upperBoundMinSupport as 1.0

i.) Bar Graph for Combined Data Set:

For the Combined dataset in which all Patients that means both liver and non liver patients of UCI and India data set. UCI data set contains 345 patient records and India data set contains 583 patient records. Total records are 928.

Figure 4: Bar Graph Between number of rules vs MinSupport for Combined dataset

Figure 4 shows the bar graph the number of rules found for Apriori and FP-Growth in this case. Graph shows that for both Apriori and FP-Growth number of rules are decreasing as the value of MinSupport is increasing. At value of MinSupport 0.01 and 0.02 number of rules of FP-Growth algorithm are more than that of Apriori. But for other all values numbers of rules of Apriori are more as compared to FP-Growth.

i.) Bar Graph for Indian Patient Data Set For the Indian Patient dataset in which liver Patients of India data set. India data set contains 416 patient records

Figure 5 shows the bar graph the number of rules found for Apriori and FP-Growth in this case. Graph shows that for both Apriori and FP-Growth number of rules are decreasing as the value of MinSupport is increasing. Number of rules became almost constant fter the value of MinSupport is 0.08.

ii.) Bar Graph for Indian Non Patient Data Set For the Indian Non patient dataset in which all Patients that means non liver patients of India data set. India data set contains 167 patient records.

Figure 6: Bar Graph Between number of rules vs MinSupport for Indian Non Patient dataset

Figure 6 shows the bar graph the number of rules found for Apriori and FP-Growth in this case. Graph shows that for both Apriori and FP-Growth number of rules are decreasing as the value of MinSupport is increasing. Number of rules became almost constant after the value of MinSupport is 0.09.

iii.) Bar Graph for USA Patient Data Set
For the UCI Patient dataset in which liver Patients of UCI data set. UCI data set contains 145 patient records.

Figure 7: Bar Graph Between number of rules vs MinSupport for USA Patient dataset

Figure 7 shows the bar graph the number of rules found for Apriori and FP-Growth in this case. Graph shows that for both Apriori and FP-Growth number of rules are decreasing as the value of MinSupport is increasing. Number of rules became almost constant after the value of MinSupport is 0.07.

iv.) Bar Graph for USA Non Patient Data Set

For the USA Patient dataset in which non liver Patients of USA data set. USA data set contains 200 patient records.

Figure 8: Bar Graph Between number of rules vs MinSupport for USA Non Patient dataset

Figure 8 shows the bar graph the number of rules found for Apriori and FP-Growth in this case. Graph shows that for both Apriori and FP-Growth number of rules are decreasing as the value of MinSupport is increasing. Number of rules became almost constant after the value of MinSupport is 0.08.

IV. DISCUSSION:

At last, it is observed that there are some common rules among the two algorithms (Apriori and FP-Growth) for different data sets. Graphical representation for this is shown as below:

Figure 9: Bar Graph Between number of common rules vs different datasets

Figure 9 shows the bar graph the number of common rules found for Apriori and FP-Growth for different datasets. Graph shows that for both Apriori and FP-Growth numbers of rules are almost same. But in case of combined data set numbers of common rules are very less. But for other four data sets are number of common rules are more. From this it is shown that there is not much more difference between two algorithms. But execution time of FP- Growth is less as compared to all other methods (ANOVA, MANOVA) that are applied to different data sets that is in milli seconds.

V. CONCLUSION

In this paper, medical data of liver patients have analyzed. There is large amount of data in any hospital. As day by day medical transactions are becoming large and complex. So, it's very difficult to access data of particular patient. To make quick or easy decisions, there is requirement of Medical Decision Support System (MDS). It is concluded is that when ANOVA and MANOVA are applied for first two data sets there is more significant difference between two populations. In third data set, analysis on SGPT between non liver patients of USA and India data sets, there is no significant difference between the two populations. So, further experiments of Apriori and FP -Generation Algorithms are conducted. These algorithms have generated different association rules of each. Number of association rules of both Apriori and FP-Growth are almost same for all five categories of data sets. But in case of combined data set numbers of common rules are very less. From this it is shown that there is not much more difference between the association rules of the two algorithms. But execution time of FP- Growth is less as compared to all other methods (ANOVA, MANOVA) that are applied to different data sets that is in milli seconds.

VI. FUTURE SCOPE

- In our research, we have diagnosed Liver data sets in the same way by using different algorithms for other diseases like breast cancer, kidney disorder etc.
- On the basis of best rules found, we can develop an automated medical diagnosis system and need for its localization settings based on the geographical region.
- There are many other algorithms (K Optimal Pattern Discovery, Sequential Pattern mining, Quantitative Association Mining, High – Order pattern Discovery etc.) that can be used for data mining.
- Number of attributes can change for different data sets.
- There are different exploratory methods (Neural Networks, Multivariate Exploratory Techniques etc.).

REFERENCES:

- [1] Bendi Venkata Ramana, Prof. M. Surendra Prasad Babu, Prof. N. B. Venkateswarlu "A Critical Comparative Study of Liver Patients from USA and INDIA: An Exploratory Analysis", IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012.
- [2] J. Kim, W. Zhu, L. Chang, P. M. Bentler, and T. Ernst, "Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data," Human Brain Mapping, vol. 28, no. 2, pp. 85-93,2007.
- [3] J.Li, Z. Wang, and M. McKeown, "A multi-subject dynamic Bayesian network (DBN) framework for brain effective connectivity," in Acoustics, Speech and Signal Processing, 2007 IEEE International Conference on,2007.
- [4] J.Li, "Dynamic Bayesian networks: modeling and analysis of neural signals," University of British Columbia, Tech. rep., 2007.

- [5] Jaiwei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", second edition, San Francisco, USA, ISBN 1-55860-901-6,2006.
- [6] "http://consumersmedical.com/Medical-Decision-Support.html"
- [7]. Mireille Tohm'e, R'egis Lengell'e and Virginie Freytag:" A multi class multivariate Mireille group comparison test: Application to drug safety". In Proceedings of the 32nd IEEE International Conference on EMBS, 2006, pages 4711-4714, September 4, 2011.
- [8]. Junning Li, Z. Jane Wang and Martin J. McKeown: "A Framework for Group Analysis of fMRI Data using Dynamic Bayesian Networks". In Proceedings of the 29th IEEE International Conference on EMBS pages 5991-5994, August 2007. [3].
- [9]. Neven Cukrov, Nataša Tepi, Dario Omanovi, Sonja Lojen, Elvira Bura-Naki, Vjerocka Vojvodi and Ivanka Pižeta : "Anthropogenic and Natural Influences on the Krka River (Croatia) Evaluated by Multivariate Statistical Analysis". In Proceedings of the 31st IEEE International Conference on Information Technology Interfaces pages 219-224, June 2009.
- [10]. Z. Haddi, F. Annanouch, A. Amari, A. Hadoune, B.Bouchikhi and N. El Bari: "Application of a Portable Electronic Nose Device to Discriminate and Identify Cheeses with Known Percentages of Cow's and Goat's Milk". In Proceedings of the IEEE International Conference on Sensors, pages 771-774, 2010.
- [11]. Z. A. Dastgheib, B. Lithgowand Z. Moussavi: "Application of Fractal Dimension on Vestibular Response Signals for Diagnosis of Parkinson's Disease". In Proceedings of the 33rd IEEE International Conference on EMBS, pages 7892-7895, September 2011.
- [12]. S. Dimitrova: "Investigations of Some Human Physiological Parameters in Relation to Geomagnetic Variations of Solar Origin and Meteorological Factors". In Proceedings of the 2nd IEEE International Conference on Recent Advances in Space Technologies, pages 728-733, 2005.
- [13]. Paulo Ricardo Galhanone, David Martin Simpson, Antonio Fernando C. Infantosi Eduardo Faveret, Maria Alice Genofre, Helio Bello and Leonard de Azevedo : "Multivariate Analysis of Neonatal EEG in Different Sleep Stages:Methods and Preliminary Results". In Proceedings of the 17th IEEE International Conference on Engineering in Medicine and Biology Society, vol 2, pages 1021-1022, 1995.
- [14]. Diego Moitre, and Fernando Magnago : "Multivariate Analysis of Variance Applied to Competitive Electricity Markets: The Fixed Effects Model ". In Proceedings of the IEEE International Conference on Power Engineering Society General Meeting, pages 1-7, 2007.
- [15]. B.Surendiran, Y.Sundaraiah, A.Vadivel: "Classifying Digital Mammogram Masses using Univariate ANOVA Discriminant Analysis". In Proceedings of the IEEE International Conference on Advances in Recent Technologies in Communication and Computing, pages 175-177, 2009.
- [16]. Martha L. Zequera, Leonardo Garavito, William Sandham, Jorge A. Alvarado, Ángela odríguez, Carlos A. Wilches, Ana C. Villa, Shirley V. Quintero and Juan C. Bernal: "Assessment of the effect of time in the repeatability of the stabilometric parameters in diabetic and nondiabetic subjects during bipedal standing using the LorAn pressure distribution measurement system". In Proceedings of the 33rd IEEE International Conference on EMBS, pages 8531-8534, September 2011.
- [17]. Benjamin F. Merembeck and Brian J. Turner: "Directed Canonical Analysis and the Performance of Classifiers Under Its Associated Linear Transformation". In Proceedings of the IEEE Transactions on Geoscience and Remote Sensing, Vol. Ge-18, No. 2, pages 190-196, April 1980.
- [18]. IBM Statistical Package for the Social Sciences (SPSS) 20.00: